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In a previous paper, Germano, et al. (1991) proposed a method for computing 
coefficients of subgrid-scale eddy viscosity models as a function of space and time. 
This procedure has the distinct advantage of being self-calibrating and requires no 
a priori specification of model coefficients or the use of wall damping functions. 
However, the original formulation contained some mathematical inconsistencies that 
limited the utility of the model. In particular, the applicability of the model was 
restricted to flows that are statistically homogeneous in at least one direction. These 
inconsistencies and limitations are discussed and a new formulation that rectifies 
them is proposed. The new formulation leads to an integral equation whose solution 
yields the model coefficient as a function of position and time. The method can be 
applied to general inhomogeneous flows and does not suffer from the mathematical 
inconsistencies inherent in the previous formulation. The model has been tested in 
isotropic turbulence and in the flow over a backward-facing step. 

1. Introduction 
In large-eddy simulation (LES) one needs to model the subgrid-scale stress tensor 

T~~ = uiui - UiUj, where the bar denotes some local average (filter) that removes the 
high spatial frequencies. One popular eddy viscosity model (Smagorinsky 1963) is 

7.. 1J - ;&7 lJ kk  = -2CA2JSJSjj. (1.1) 

Here A is the filter width, sij is the strain rate tensor defined as 

_ _  
C is a dimensionless parameter and 131 = (2SijSij)1’2. 

The dynamic model (Germano et al. 1991) is a method for computing C at each 
time-step as a function of position from the information already contained in the 
resolved velocity field (rather than treating it as an adjustable parameter). There are 
two advantages to this. Firstly, it gives a systematic procedure for computing a flow 
about which there is no prior experience and therefore no guidance is available to 
adjust the parameter C. Secondly, in an inhomogeneous flow, the optimum choice of 
C may be a function of position; one does not expect the entire flow to be represented 
by a single constant. The same consideration applies to flows undergoing transition 
to turbulence or more generally, to flows whose statistical properties are changing 
with time. In the traditional approach, one needs to introduce further arbitrary 
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assumptions, such as wall damping functions or a prescription to reset the value 
of C from zero to a finite number as the flow undergoes transition to turbulence. 
In contrast, inhomogeneous and statistically unsteady flows can be handled very 
naturally in the context of the dynamic model since C is a function of position and 
time. Though the dynamic model lacked the full generality necessary to handle general 
turbulent flows with no homogeneous directions, the method had some important 
successes (Piomelli 1993; Cabot & Moin 1993; Moin et al. 1991; Zang, Street & 
Koseff 1993; Bohnert & Ferziger 1993). 

The basic formalism behind the method proposed by Germano et al. (1991) is 
summarized below. To compute C one first introduces a ‘test’ filtering operation on 
the large-eddy field that is denoted by the symbol ‘ ’: 

= / G(x?Y)v(Y)dY, (1.3) 

where G(x,y) is any kernel that serves to damp spatial fluctuations shorter than some 
characteristic length x > A and x, y are position vectors. The equations for the 
test-filtered field contain the ‘test-level’ subgrid-scale stress term 

Both Tij and zij  are unknown in LES; however, the two tensors are related by the 
identity (Germano et al. 1991) 

Here the Leonard term Lij = i j i i j j  - ijicj is computable from the large-eddy field. 
Finally, it is assumed that a scaling law is operative and therefore the subgrid-scale 
stress at the test level may be written as 

(1.5) L . .  - T . . - T . .  r J -  1J 1J. 

A -- 

On substituting (1.1) and (1.6) into (1.5) an equation for determining C is obtained: 

where 
A2 12 

aij = -2A ISJSij ,  

(1.9) 
The method of obtaining C from (1.7) used by previous authors contained some 

mathematical inconsistencies which are discussed in the next section. Moreover, the 
expression for C so derived resulted in the simulation becoming unstable. To avoid 
the instability a prescription of averaging over homogeneous directions was adopted 
which could not be justified except in a heuristic way. A more serious limitation was 
that the prescription would not work in flows that have no homogeneous directions. 
Admittedly ad hoc schemes could still be found to make the method ‘work‘ in 
inhomogeneous flows. Prescriptions such as a local ‘smoothing’ by averaging over 
neighbouring grid cells with or without ‘clipping’ (setting negative values of C to zero) 
have been used in inhomogeneous flows and reasonable agreement with experiments 
have been achieved (see e.g. Zang et al. 1993). In this paper our aim is to develop 
a method of computing C using (1.7) in a mathematically consistent fashion without 
resorting to arbitrary prescriptions. In the process of doing so we demonstrate that 
some of the expressions for C used by previous authors that appeared to be without 

2 - -  
pi, = -2A ISISij. 
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formal justification can in fact be derived rigorously starting from a few clearly 
stated assumptions. The principal goal of this work is to put the dynamic modelling 
procedure on firm theoretical foundations so that the method can be applied to 
arbitrary inhomogeneous flows without recourse to ad hoc procedures. 

1.1. DifJiculties with previous models 
Since C appears inside the filtering operation, (1.7) is a system of five (since the 
tensors are symmetric and traceless) independent integral equations involving only 
one function C. In previous formulations (Germano et al. 1991; Moin et al. 1991; 
Lilly 1992) one simply ignored the fact that C is a function of position and took C 
out of the filtering operation as if it were a constant. This rather arbitrary procedure 
cannot be justified a posteriori because the C field computed using this procedure is 
found to be a rapidly varying function of position (Moin 1991). Nevertheless, the 
procedure reduced the system of integral equations to algebraic equations at each 
point of the field. The redundancy of equations is dealt with (Lilly 1992) by choosing 
C to 'best satisfy' all the equations, that is, C is chosen so as to minimize the sum of 
the squares of the residuals Eij(x)Eij(x) where 

h 

E . .  11 = L.. 11 - L&.L 3 11 kk - a..C 11 + p..c. 11 (1.10) 

The result is 

(1.11) 
h 

where mij = aij - &. (Throughout this paper summation over repeated indices is 
implied.) 

The C obtained from (1.11) can be either positive or negative. A negative value 
of C implies a locally negative eddy viscosity, which in turn implies a flow of energy 
from the small scales to the resolved scales or backscatter. It is known from direct 
numerical simulation (DNS) data (Piomelli et al. 1991) that the forward and reverse 
cascades of energy in a turbulent flow are typically of the same order of magnitude 
with a slight excess of the former accounting for the overall transfer of energy from 
large to small scales. The presence of backscatter therefore is a desirable feature of 
a subgrid-scale model. However, when (1.11) is used in an LES the computation is 
found to become unstable. The instability can be traced to the fact that C has a large 
auto-correlation time. Therefore, once it becomes negative in some region, it may 
remain negative for excessively long periods of time during which the exponential 
growth of the local velocity fields, associated with negative eddy viscosity, causes 
a divergence of the total energy (Lund, Ghosal & Moin 1993). Though this issue 
of stability remained unresolved, a way around the problem was found if the flow 
possessed at least one homogeneous direction. One assumed C to be independent of 
the homogeneous directions and to make (1.1 1) consistent with this assumption, the 
numerator and denominator were averaged over the homogeneous directions. The 
averaging made C a more smoothly varying function that rarely became negative. 
This scheme has produced results in very good agreement with experiments and DNS 
(Germano et al. 1991; Moin et al. 1991; Cabot & Moin 1993). The disadvantages 
are: (a)  it is based on an ad hoc procedure; (b )  the prescription can only be applied 
to flows that have at least one homogeneous direction, thus excluding the more 
challenging flows of engineering interest. 

In the next section we give a formulation that removes the inconsistency involved 
in reducing the integral equations (1.7) to algebraic equations. In 93 we derive the 
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spatial averaging prescription of German0 et al. (1991) within the general framework 
of this new formulation for flows having homogeneous directions and show how to 
generalize the method to inhomogeneous flows. We call this new model the dynamic 
localization model (constrained) to stress the fact that the coefficient field C is a 
function of all three coordinates as well as time but is restricted to have non-negative 
values. In 94 the model is extended to allow for backscatter with the inclusion of 
an equation for the subgrid kinetic energy budget. The new model, which we will 
refer to as the dynamic localization model (k-equation), is evaluated from the point 
of view of stability, realizability, Galilean invariance and behaviour near solid walls. 
Some issues of numerical implementation are addressed in $5. In $6 the dynamic 
localization model (constrained) is applied to the problem of turbulent flow over a 
backward-facing step as an example of a complex geometry flow. Some tests on 
isotropic turbulence are also summarized. Conclusions are presented in 97. 

2. A variational formulation 
The mathematical inconsistency associated with removing the ‘C’ from the filtering 

operation discussed in the last section can be removed by the following generalization 
of the least-square minimization procedure. The ‘error’ in satisfying (1.7) for a given 
coefficient field C is 

A 

E..(x) 11 = Lij - i G i j L k k  - aijC + PijC. (2.1) 
At any given point, ‘x’, Eij depends on the value of the function C at neighbouring 
points in the field. One cannot therefore minimize the sum of the squares of the 
residuals EijEij locally since reducing the value of EijEij at one point changes its 
values at neighbouring points. However, the method of least squares has a natural 
generalization to the non-local case. The function C that ‘best satisfies’ the integral 
equations (1.7) is the one that minimizes 

F [ C ]  = Eij(x)Eij(x)dx. (2.2) J 
F [ C ]  is a functional of C and the integral extends over the entire domain. To find 
the Euler-Lagrange equation for this minimization problem, we set the variation of 
9 to zero: 

6 9  = 2 J Eij(x)6Eij(x)dx = 0. (2.3) 

Using the definition of Eij we get 

which may be rearranged as 

Thus, the Euler-Lagrange equation is 
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which may be rewritten in terms of C as 
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(2.7) 

where 

and 

&(x, Y 1 = a i j ( ~ ) B i j ( ~ ) G ( ~ ,  Y ) ,  

, x , ( X , Y )  = pij(x)pij(Y) 1 h ~ ( z , x ) ~ ( z , y ) .  

Equation (2.7) is readily recognized as Fredholm’s integral equation of the second 
kind. Under certain conditions it admits a unique solution. 

Even though this formulation removes the inconsistency associated with taking C 
out of the ‘ A ’  operator, it does not remove the instability associated with negative 
eddy viscosity. In the following sections we show two methods that address this 
stability problem. 

3. The constrained variational formulation 
In this section we address the stability problem created by the negative eddy 

viscosity by requiring that in addition to minimizing the functional in (2.2), C satisfies 
some constraints designed to ensure the stability of the model. The choice of such 
constraints is clearly not unique and different models may be constructed by changing 
the constraint. Thus, it will be shown that the local least-squares method (Lilly 1992) 
coupled with the volume-averaging prescription (German0 et al. 1991) can actually be 
derived as a rigorous consequence of such a constrained variational problem for flows 
with at least one homogeneous direction. The method is then extended to general 
inhomogeneous flows by imposing a constraint that does not rely on the existence 
of homogeneous directions. All of these methods are designed to prevent instability 
in the calculations by ruling out backscatter in one way or another. This restriction 
is removed in 54 where the theory presented in this section is extended to allow for 
backscatter without causing an instability. 

3.1. Homogeneous turbulence 
In the case of homogeneous turbulence, it is natural to assume that C can de- 
pend only on time (note that the eddy viscosity vt  = CA2JsI is still a function of 
space as well as time). Let us therefore impose this as a constraint in the prob- 
lem of minimizing the functional (2.2). The functional S [ C ]  then reduces to the 
function 

(3.1) 

) 

R(C) = (2ij~ij) - 2 ( y i j m i j ) c  + (mijmij)C2 
h 

where yi j  = Lij - (1/3)dijLkk is the anisotropic part of Lij, mij = aij - pi j  and ( 
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denotes integral over the volume. The value of C that minimizes the function F ( C )  
is easily found to be 

The latter equality holds since mij is traceless. Equation (3.2) is precisely the result of 
Lilly. In the rest of this paper we will refer to expression (3.2) and its counterpart for 
partially homogeneous flows (3.6) as the dynamic model. 

3.2. Flows with at least one homogeneous direction 

As an example we consider a channel flow with the y-axis along the wall-normal 
direction and periodic boundary conditions in the x- and z-directions. Since the flow 
is homogeneous in the (x,z)-plane, we impose the constraint that C can depend only 
on time and the y-coordinate. It is necessary to assume (as did Germano et al.) that 
the filtering kernel G(x,y) is defined so as to be independent of the cross-channel 
direction, y. Such an assumption would strictly hold if the grid in the y-direction was 
sufficiently fine that the flow would be completely resolved in the y-direction. Usually 
this is not the case, so such an assumption is not justifiable. However, if one does 
make this assumption the formulas used by the previous authors can be rigorously 
derived from the variational formulation. Thus, since the filtering is only in x and 
z and C is assumed independent of x and z, C may be taken out of the filtering 
operation so that the functional (2.2) reduces to 

C I - /  - dy((2ij  - mijC)(S?ij - mijC))xz 

d% = 2 / dy dC(y)(mklmkrC - m i j 2 i j ) x z  = 0 

(3.3) 

where ( )xz denotes integral over the (x,z)-plane. The condition for an extremal of 
the functional (3.3) may be written as 

(3.4) 

which implies 

(mi j2 i j  - mkmklC)xz = 0, (3.5) 
and since C is independent of x and z and mij is without trace, 

This is the same expression as that of Germano et al. and Lilly for flows homogeneous 
in the (x,z)-plane. 

In practice, situations may arise where the C computed using (3.6) is still negative 
at some points even after averaging over the homogeneous directions. This may 
happen for example when the number of points in the homogeneous direction or 
plane is too small to ensure a statistically significant sample. In such situations 
practitioners (e.g. Zang et al. 1993) have sometimes resorted to a ‘clipping’ scheme, 
that is taking only the positive part of (3.6). The present formulation allows for a 
rigorous reinterpretation for this seemingly arbitrary procedure. If one imposes the 
constraints C = C(y,t) and C 2 0 and also assumes G(x,y)  to be independent of the 
cross-channel direction then the problem reduces to minimizing (3.3) subject to the 
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constraint C 2 0. It can be readily verified (using the method presented in the next 
section) that the solution to this constrained variational problem is 

where the operation of taking the positive part, denoted by the suffix '+', is defined 
as x+ = $(x + 1x1) for any real number x. 

3.3. Inhomogeneous flows 
In this section we will insist that the eddy viscosity be positive and defer the issue of 
backscatter to 94. Accordingly, in the problem of minimizing the functional in (2.2), 
we impose the constraint 

It is convenient to write the variational problem in terms of a new variable ( such 
that C = 12. Then the constraint (3.8) is equivalent to the condition that 4 be real. 
In terms of the new variable 4, (2.5) becomes 

c 2 0. (3.8) 

J (-rijEij + Pij /'Eij(y)G(y,x)dy ) <(x)bt(x)dx = 0, (3.9) 

which gives for the Euler-Lagrange equation 

- E . . E . .  + P . .  Eij(y)G(y,x)dy <(x) = 0. (3.10) 

Therefore, at any point x, either l (x)  = 0 or the first factor in (3.10) vanishes. That 
is, at some points of the field C(x) = 0 and at the remaining points 

( IJ ?I ZJ 1 1 
C(X) = $[C(X)l 

where 

3[C(X)l = f ( 4  + /' mx,Y)c(Y)dY 

with f(x) and X ( x , y )  as defined in 92. Note however, we do not know in advance in 
which part of the domain C vanishes; this information is part of the solution of the 
variational problem. C can be found using the following iteration scheme: 

(3.11) 

If the iteration process converges then the solution may be written concisely as 
r r 1 

(3.12) 

where + denotes the positive part. It is clear that a solution of (3.12) satisfies the 
Euler-Lagrange equation (3.10), but it is not obvious whether this solution is unique 
(we exclude the trivial solution C(x) = 0). Equation (3.10) is a nonlinear integral 
equation and no rigorous results regarding the existence or uniqueness of its solutions 
are known to the authors, though numerical experiments indicate that it does have a 
unique non-trivial solution for all cases studied so far. 

The Euler-Lagrange equation (3.12) (or (2.7)) only ensures that the solution is an 
extremum or a saddle point of the functional. However, it is simple to show that in 
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the case of the unconstrained problem (2.7) actually represents a minimum. From 
(2.2) we have (for perturbations in C that are not necessarily small) 

8% = 2 Ejj (x)8Ei j (x)  dx + 8Ei,(x)8E;,(x) dx. (3.13) 

The first term vanishes if C(x) satisfies (2.7), so that 89-  2 0. Therefore, we have a 
minimum of 9-[C].  We have not been able to carry out the proof for the constrained 
problem. However, there seems to be some numerical evidence that the stationary 
solution (3.12) of the variational problem is indeed a minimum (D. Carati, private 
communication). 

The solution of (3.12) gives a fully space-time-dependent coefficient field C which 
shares all the desirable features of the original dynamic model of Germano et al. It 
vanishes when the flow is laminar, it yields the ‘y3-law’ for the eddy viscosity near 
the wall and it is self-calibrating. However, in contrast to the original formulation 
of Germano et al. this model is applicable to fully inhomogeneous flows where it 
is intrinsically stable by virtue of the non-negativeness of the eddy viscosity. In this 
sense it is a generalization of the original dynamic model to inhomogeneous flows. 
Some examples of its application will be provided in $6. 

s 

4. A model involving the subgrid-scale kinetic energy 
4.1. Motivation 

The stability problem associated with the Smagorinsky model with the (unconstrained) 
variational determination of the coefficient can be understood in the following way. 
The Smagorinsky model (1.1) does not contain any information regarding the total 
amount of energy in the subgrid scales. Therefore, if the coefficient C becomes 
negative in any part of the domain, the model does not have any information on the 
available energy in the subgrid scales and is therefore unable to provide a mechanism 
to saturate the reverse flow of energy. However, in a physical system, if all the energy 
available in the subgrid scales is removed the subgrid-scale stress will go to zero, thus 
quenching the reverse flow of energy. Clearly, a more elaborate model that keeps 
track of the subgrid-scale kinetic energy is required. Such a model is described in 
$4.2. There we allow C to have either sign but make the eddy viscosity depend on 
the subgrid-scale kinetic energy k.  When this is coupled with a transport equation for 
k ,  the method allows backscatter, without any instability. The energy flows back and 
forth between the resolved and subgrid scales while their sum decays monotonically 
due to viscous effects in the absence of external input of energy. 

It should be noted that even though the model we present here is a workable model 
that does describe the reverse flow of energy from the subgrid to resolved scales, the 
mechanism, representation as well as importance of backscatter is a matter of some 
contention among researchers. Intuitively one can think of the energy transfer as 
arising due to the effect of the very small-scale eddies acting on the resolved scales 
across a ‘spectral-gap’ together with another term that represents the effect of the 
intermediate-size eddies that constitute the ‘spectral-gap’. The first contribution 
can be very well approximated by a (positive) eddy viscosity if the spectral gap is 
sufficiently large. On the other hand there is no reason to believe that the effect of 
the intermediate-size eddies can be represented by a gradient diffusion model. It is 
these intermediate-size eddies that are thought to be responsible for the phenomenon 
of backscatter. Some models have been suggested that represent the effect of these 
intermediate eddies as a stochastic force added to the eddy viscosity term. Chasnov 
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(1990, 1991) extensively studied the influence of this ‘eddy forcing’ in LES of isotropic 
turbulence within the framework of the EDQNM approximation. The influence of 
adding a stochastic term has also been explored in the context of boundary layers 
(Mason & Thomson 1992) and plane mixing layers (Leith 1990). These authors 
claim that the inclusion of such a random backscatter improves the agreement of 
the simulation with experiments. From a theoretical point of view however, this 
stochastic model of backscatter may be just as unsatisfactory as the gradient diffusion 
model. Modelling backscatter as a stochastic noise totally uncorrelated from one 
time-step to the next implies that the correlation time of the intermediate eddies is 
much shorter than that of the smallest resolved eddies. This is clearly not the case 
since the smallest resolved eddies are not much larger than the intermediate ones. 
The interpretation of ‘backscatter’ is also subject to considerable uncertainities since 
the intensity of backscatter is found to depend strongly on the filter type (Piomelli 
et al. 1991). These issues will have to be better understood before any meaningful 
assessment of the importance of backscatter in LES and the best way to represent 
it can be achieved. The question of backscatter is discussed in some detail in a 
forthcoming paper (Carati, Ghosal & Moin 1995). 

4.2. The model 
From dimensional analysis, the turbulent viscosity is the product of a velocity and a 
length scale. We will take the square root of the subgrid-scale kinetic energy? for a 
velocity scale and the filter width as a length scale. Thus, 

(4.1) 7.. - 16..2 t j  kk = -2CAk’I2;Tij 

and 

where 

A h  K = 1(= - U.U.) = 1 T.. 2 1 1  1 1  2 ” ’  

On taking the trace of (1.5) and using (4.3) and (4.4) we have$ 
(4.4) 

h 

K = k + iLii. (4.5) 

On substituting (4.1) and (4.2) into (1.5) A and solving the corresponding variational 
problem we get (2.7) with aij = -2xK lI2sij and Pi j  = -2Ak’I2Sij to determine C(x). 

To complete the model, it remains to give a method for determining k. For this 

7 The possibility of treating the dynamic model in conjunction with an equation for turbulent 
kinetic energy was considered by Wong (1992) in a different context. 

$ If G ( x , y )  > 0 then k ,  K and L,, are always non-negative. This follows from writing the 
expression for k ,  K or L,, in discrete form and using the inequality (c, w,X,) < (El wl) (c, w,X;) 
where the sum of the weights w, is unity. The inequality is obtained by putting a = (w:’~, wf”, w:”) 
and b = (w:’~X,,W:’~X~,W:’~X~) in Cauchy-Schwarz inequality la .  bl < 1 1 ~ 1 1  . 11611. Note however 
that the result is not true for the Fourier cut-off filter where G(x ,y )  assumes negative values so that 
some of the weights w, may be negative. Therefore, in this paper a non-negative filter is always 
implied. 
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we will use the well known model of the transport equation for k (see for example, 
Speziale 1991) 

k3/2 
d,k + iijdjk = -zijsij - C*- + dj(DAk'/2djk) + Re-ldjjk (4.6) A 

with the grid spacing A taken as the length scale appropriate for the subgrid-scale 
eddies. Here C, and D are non-negative dimensionless functions of position and time, 
Re is the Reynolds number and zij is given by (4.1). The coefficients C. and D can be 
determined dynamically (see the Appendix) : 

r -I 

L J 

and 

4.3. Stability 
First it will be shown that the model described in $4.2 is globally stable, that is, 
the total energy in the large-eddy field remains bounded in the absence of external 
forces and with boundary conditions consistent with no influx of energy from the 
boundaries. Using the continuity and momentum equations for the large-eddy fields 
and (4.6) we derive an equation for the total energy in the resolved as well as the 
subgrid scales : 

Here the integral is over the region occupied by the fluid. Boundary conditions are 
assumed to be such that there is no net flux of energy from the boundaries of the 
domain so that the surface terms vanish. Note that the terms in zijsij which appear 
as a source term for k and a sink for the resolved scales (if C > 0 and vice versa 
when C < 0) have cancelled out in (4.9) and we are left with the result that in the 
absence of externally imposed forces and non-trivial boundary conditions the total 
energy in the large and small scales taken together must monotonically decrease as a 
result of molecular viscosity. Using the notation 

E(t) = - BiBidV 
2 's 
J 

and 

e(t) = kdV 

(4.10) 

(4.11) 

we have by (4.9), E(t)+e(t) d E(O)+e(O) and since e(t) 2 0 (see $4.4), E(t) < E(O)+e(O). 
Thus, the energy in the large-eddy field cannot diverge even though the eddy viscosity 
is allowed to be negative. 

4.4. Realizability 
It is necessary to demonstrate that the k computed using (4.6) has the following 
property: k(x,t) 2 0 at all points x at all times t if k(x,O) 2 0. This condition is 
required because it is clear from its definition that k cannot be negative and indeed 
the model described in $4.2 cannot be implemented unless the non-negativeness of k 
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can be guaranteed. This condition is part of and included in a more general condition 
of ‘realizability’ required of subgrid-scale models (Schumann 1977; Lumley 1978). 

Suppose that initially ( t  = 0), k > 0 at all points. Let t = to be the earliest time 
for which k becomes zero at some point in the domain. Let this point be x = 10. It 
will be shown that atk(xo, to) > 0 which ensures that k can never decrease below zero. 
Integration of (4.6) over an infinitesimal sphere of radius e centred around XO gives 
after dividing by e3 

(4.12) 
ak C ,  
at € 3  A 
- = -1 f a,,kdo + CAk1/21S12 - -k3I2 + 

where v = Re-’ + DAk’l2 and do is an infinitesimal element of area on the surface of 
the sphere. Since k = Vk = 0 at ‘xo’, k - e2 and Vk - e inside the sphere. Therefore, 
each term on the right side of (4.12) is of order e or higher except for the last term 
which is of order one. On taking the limit e + 0 in (4.12) we have 

= Re-’ lim - -do. 
€+o e3 J a k  an 

ak - 
at 

(4.13) 

Since k is a minimum at the point xo, the right-hand side is positive. Therefore k 
can never decrease below zero. Note that we have assumed C ,  C .  and D remain 
finite as k + 0. This is true since from (4.5) K remains finite as k + 0 so that the 
denominators in the integral equations for C ,  C ,  and D do not vanish in this limit. 
Also, in this proof we assumed that the ‘surface’ k = k(x,to) has only a first order 
contact with the k = 0 surface, that is, the second derivatives of k at xo are not all 
zero. The proof however can be easily extended to the general case - one only needs 
to replace ‘k - e2’ by ‘k - em’ in the above argument where m is the order of the 
lowest non-zero derivative of k.  

The requirement that k be non-negative is contained in a more general set of 
properties of the tensor zi j .  They are called realizability conditions and may be stated 
in several equivalent forms (Schumann 1977). Since the subgrid stress zij is a real 
symmetric tensor, it can be diagonalized where the diagonal elements z,, zp and zy 
are real. The realizability conditions can be stated as 

za,zg,zy 2 0. (4.14) 

It will be noted that (4.14) implies 

k = 2 ~ i i  1 = ;(zE + ZB + z?) 2 0. (4.15) 

Positivity of the turbulent kinetic energy is therefore a consequence of the more 
general conditions (4.14). 

The modelled subgrid-scale stress (4.1) is diagonal in a coordinate system aligned 
with the principal axes of the rate of strain tensor and the diagonal elements are 

zi = -2CAklf2si + $k (4.16) 

where si ( i  = a, p, y)  are eigenvalues of the rate of strain. The realizability conditions 
(4.14) are therefore equivalent to the condition 

(4.17) 

at each point of the field. In (4.17) the eigenvalues of the strain rate tensor have been 
arranged so that s, 2 sB 2 sy. The incompressibility condition implies s, + sp + sy = 0 
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and therefore s, 2 0, sy 5 0 and sp may be of either sign. Since C is obtained by 
solving the integral equation (2.7), it is difficult to prove any general mathematical 
result on whether the realizability condition (4.17) is satisfied. It is found from 
numerical experiments on LES of freely decaying isotropic turbulence ($6) that the 
condition (4.17) is not strictly satisfied. However, the proportion of points falling 
inside the range Cmin d C d C,,, exceeds 95%. Thus, the model ensures that k 2 0 
but is not strictly realizable in the stronger sense of guaranteeing the positivity of the 
eigenvalues of the subgrid stress. 

4.5. Galilean invariance 
The Navier-Stokes equations are invariant with respect to the transformations 

x; = xi - Ut,  (4.18) 

t = t ,  (4.19) 

u; = ui - u (4.20) 
where U is independent of space and time. It will be shown that the model described 
in this section as well as the constrained variational formulation of $3 lead to Galilean 
invariant equations for the large-eddy field. 

Substituting (4.20) in the definition of the Leonard term we derive LLj = Lij. Since U 
is constant clearly the rate of strain tensors are invariant. It is shown in the Appendix 
that (4.6) for the subgrid-scale kinetic energy is Galilean invariant. Therefore, k' = k 
and on using ( 4 3 ,  K' = K. Therefore, each term in the integral equation (3.12) in the 
constrained variational formulation and in (2.7) in the subgrid-scale kinetic energy 
formulation are invariant, so that C' = C. The invariance of the model now follows 
on using a/ax:  = a / a x ,  and DID; = D/Dt. 

, 

4.6. Behaviour near solid walls 
Consider a point near the wall with x,  y and z in the streamwise, h h wall-normal and 
spanwise directions respectively. Then near the wall zi1, zi1, zi3, zi3 - y and hence, 
by the continuity equation, U2, zz - y 2  (see e.g. White 1974). From its definition 
k = uiui - tiizii we must have k - y2. In order to obtain such a behaviour from (4.6) 
one needs to impose the boundary conditions that both k and a,k vanish at the walls. 
However, since (4.6) is only second order in space, we cannot impose both these 
conditions. Thus, we are forced to choose only k = 0 at the wall and this in general 
will give a solution with the asymptotic behaviour k - y t .  One possible remedy 
is to consider a two-equation model (such as a k-e model) in place of (4.6). This 
gives a system that is fourth order in spatial derivatives and can therefore support 
the additional boundary condition (Durbin 1990). In this paper however we restrict 
ourselves to the simpler one-equation model (4.6) and therefore the k obtained by 
solving (4.6) will in general have the behaviour k - y .  Nevertheless we will show that 
with the model coefficients computed dynamically, the eddy viscosity is proportional 
to y 3  and the molecular diffusion of kinetic energy balances the viscous dissipation 
near the wall independent of whether k - y or k - y 2 .  To stress this generality we 
will write k - y2" where m = or 1. 

t Dr W. H. Cabot (private communication) has observed a k - y 2  near-wall behaviour in 
channel flow even though only the boundary condition k = 0 is imposed. It is possible that the 
correct near-wall behaviour is somehow embedded in the equations themselves even though it is 
not explicitly enforced through the boundary conditions. 
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The strain rate is dominated by the components 3 1 2  and S12 which are finite and 
non-zero at the wall. The trace of the Leonard term Lii - y2, hence by (4.5) K - y2". 
Thus a12 - 812 - ym are the only surviving terms of aij and f i i j  near the wall. With 
these estimates , X ( x , y )  - 1 so that from (2.7) 

h 

L12 L12 
a12 2Ak1/2 S12 '  

C(x) - f ( x )  - - = - 

Thus, the eddy viscosity vt  = CAk'I2 - L12 = =-GI& - y3, the well known 'y3-law 
of the wall'. 

We now consider the balance of terms in the k-equation (4.6) in the vicinity of the 
wall. Using the estimates given in the previous paragraph, it is easily shown from the 
expressions presented in the Appendix that XD - 1, so that D - f D  at the wall. If 
we expand the pressure near the wall as p = po + yp1 + . . . and note that close to the 
wall the only significant variation of any quantity is in the wall-normal direction, we 
obtain from (A 4) in the Appendix Z1 - yul - y2, 2 2  - yu2 - y3, Z 3  - yu3 - y2. 
The only surviving components of X and Y near the wall are X2 - Y2 - Ay3"-'. 
Therefore, fo - Z2/X2 N Y ~ - ~ " / A  so that DAk'/2 - y4-2m + 0 at the wall. On using 
the expressions for 32 and f. given in the Appendix it is again easily verified that 
near the wall 32 - 1 and hence 

C.k3l2 - f,k3/2 - IARe-'ajjLiiI 

which is finite. Hence, 

- 1  
C,k3/2/A 

1 Re-' a ,k I 
independent of A and Re. The remaining terms in the k-equation clearly vanish near 
the wall. Thus, all terms in the kinetic energy equation go to zero at the wall except 
the viscous dissipation and diffusion terms. These are finite and are of comparable 
magnitude at any Reynolds number and grid resolution. This is the correct near-wall 
behaviour of the turbulent kinetic energy equation (Mansour, Kim & Moin 1988). 
It should be noted that the integral equations can be written directly in terms of 
the variables CA2, DA and C./A and in this form A appears only as the ratio i / A .  
Therefore the nature of variation of A near the wall is irrelevant in the above analysis. 

4.7. Transition to turbulence 
In a laminar flow undergoing a transition to turbulence the subgrid-scale kinetic 
energy must undergo a rapid transition from k = 0 to some finite value characteristic 
of the turbulent state. We attempt to demonstrate that (4.6) does have the appropriate 
behavior using a simplified analysis. The demonstration is qualitative in nature and 
does not constitute a rigorous proof. 

In a Lagrangian frame moving with the resolved velocity, the equation for the 
subgrid energy of a fluid parcel can be written from (4.6) and (4.1) as 

dk k312 
- = CAk'/21S12 - C.-. 
dt A 

(4.21) 

We are ignoring the diffusion term for the purpose of this qualitative analysis. 
Equation (4.21) can be written as 

(4.22) 
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where a = CA.IS12 and b2 = C,/A will be assumed constant for simplicity. For a < 0 
(4.22) has only one stationary solution with non-negative k ,  

k = 0, (4.23) 

which corresponds to a laminar flow. For a > 0 there are two stationary solutions, 
(4.23) as well as 

k = ko = a /b  2 , (4.24) 
which corresponds to turbulence in local equilibrium with production balancing 
dissipation. It is readily seen on performing a small-perturbation analysis that the 
solution k = 0 is stable for a d 0 but loses stability to k = ko if a > 0. 

Since the coefficient C is determined by the Leonard term, C is vanishingly small in 
a laminar flow and assumes positive values when the flow transitions to turbulence. 
Thus, during transition a changes from vanishingly small values to finite positive 
ones. The above stability analysis shows that under these circumstances the k -  
equation would leave the k = 0 solution which has become unstable for the solution 
(4.24) representing a turbulent state. 

5. Numerical implementation 
The simplest iteration scheme for solving the integral equation (2.7) is 

where I is a relaxation factor. To solve (3.12) one only needs to replace (5.1) by 

Convergence can be acheived provided 1I1 d I0 where I0 is some positive number. 
In practice it was found that (5.1) or (5.2) would converge only if I. was very 
small so that this straightforward point-iteration scheme is too slow for practical 
computations. The following preconditioning scheme was found to greatly increase 
the rate of convergence as well as the robustness of the scheme. 

The integral equation (2.7) may be written in operator notation as 

(I - K)C = f .  (5.3) 
On substituting K = E + (K - E) (where E is for the moment an arbitrary operator) 
in (5.3) we obtain 

If C is replaced by Cn+, on the left-hand side and by C, on the right-hand side we 
obtain the iteration scheme 

C = (I - E)- ' f  + (I - E)-'(K - E)C. 

Cn+l = (I - E)-'f + (I - E)-'(K - E)C,. 

(5.4) 

( 5 - 5 )  
Equation (5.5) reduces to (5.1) if we choose E such that 

1 - 1  
w Ew = - 

I 
where w is an arbitrary function of position. It is well known that the speed of 
convergence of the scheme (5.5) depends on the eigenvalue spectrum of the operator 

(5.7) B = (I - E)-'(K - E). 
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The smaller the maximum modulus of the eigenvalues of B, the faster is the conver- 
gence. An efficient scheme is therefore obtained by choosing E such that ‘E = K and 
yet (I - E) can be readily inverted. One possible choice is 

Evb)  = p v a x ,  x)v(x) (5.8) 

where I/ is the volume of the support of the kernel X and p is a positive parameter. 
The motivation for (5.8) is the following: 

(5.9) 

where p(x)  is expected to be a positive quantity of order one. Equation (5.9) is 
exact. Equation (5.8) is the approximation to K obtained on ignoring the position 
dependence of p. On substituting (5.8) in (5.5) we obtain after some algebra 

where 

When G ( x , y )  is a ‘top-hat’ filter (that is, G(x,y)  is constant inside the cube of edge 2 
centred at x and zero outside) (5.11~) reduces to 

(5.11b) 

If p is chosen between about 0.2 and 0.5, for the ‘top-hat’ filter the scheme is found 
to be convergent for arbitrary velocity fields including fields of random numbers 
for which the point-iteration scheme (5.1) is extremely slow. The iteration is usually 
started off by using the C field from the previous time-step as the starting guess 
except for the first time-step where we take C = 0 as the first guess. 

The kinetic energy version of the model requires initial conditions for the subgrid- 
scale kinetic energy. In situations where the initial k is not known, the following 
method can be used to obtain a rough estimate for it from the ‘test-window’. If 
the turbulence is locally at equilibrium, production of turbulent energy equals its 
dissipation. Under those circumstances one can estimate the subgrid energy as 
k = 2CkA21S)* where Ck is a dimensionless coefficient of order one. Similarly, at the 
test level, K = 2CkA2(SI2. Substitute these in (4.5) and integrate over the volume of 
the fluid. Then, on treating Ck as a constant we get 

A -  

I_ .  (5.12) 

In steady-state calculations one can simply take k = 0 at the initial time. The solution 
‘recovers’ and approaches the statistical steady state. In the decaying isotropic 
turbulence computations presented in the next section the initial k was assumed 
constant in space with an amplitude that was found by integrating the experimental 
spectrum. 

(Lii) ck = 
4(z2/?l2 - A2JSI2) 
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6. Results 
As a first step in application of these models a detailed study was made for the 

simple case of isotropic turbulence. The simplicity of this flow makes it possible to 
test a subgrid-scale model at a much greater depth than would be possible with a 
more expensive complex geometry flow. Details of this computation are discussed 
elsewhere (Carati et al. 1995), here we summarize the principal results. 

The dynamic localization model (constrained) was then applied to the flow over a 
backward-facing step. This flow is not fully inhomogeneous; it is still homogeneous 
in the spanwise direction. However, it has enough of the characteristics of inhomo- 
geneous flows (such as rigid walls, separation, adverse pressure gradient, boundary 
layer recovery) to enable one to draw reasonable conclusions about the performance 
of the model in complex geometry situations. The details of this project will be 
given separately (Akselvoll & Moin, in preparation); here the principal results are 
summarized. (See also the papers by Le & Moin 1994, Friedrich & Arnal 1990 and 
Silveira-Net0 et al. 1993 which are devoted exclusively to the problem of turbulent 
flow over a backward-facing step.) 

S. Ghosal, T. S. Lund, P. Moin and K.  Akselvoll 

6.1. Isotropic turbulence 
We attempt to simulate the experiment on decaying turbulence behind a grid by 
Comte-Bellot & Corrsin (1971). The Taylor microscale Reynolds number Re* is in 
the range 71.6 - 60.6. Turbulence is generated by forcing air through a grid in a wind 
tunnel and measurements are performed downstream of the grid. In a reference frame 
moving with the average flow velocity the problem can be thought of as decaying 
isotropic turbulence. We model this by considering the fluid to be inside a cubical box 
with periodic boundary conditions. In the experiment, the spectra are measured at 
three downstream locations. The downstream distance in the experiment is converted 
to time by using 

dx‘ t=.I u(xl) 
where x is the downstream distance from the grid and u ( x )  is the mean velocity over 
the cross-section of the wind tunnel. We have non-dimensionalized all experimental 
data by adopting the length scale L/2n and the time scale t. for computational 
convenience. Here 1. = 10M and t ,  = 64M/Uo, where M = 5.08 cm is the wind 
tunnel grid spacing and U, = lo3 cm s-l is the velocity of the air stream before it 
impinges on the grid. 

Figure 1 shows the energy decay as a function of time computed using the dynamic 
model ($3. l), dynamic localization model (constrained) ($3.3) and the dynamic local- 
ization model (k-equation) ($4) together with the experimental data of Comte-Bellot 
& Corrsin (1971). The ‘resolved’ and ‘subgrid’ energies were obtained by integrating 
the experimental three-dimensional spectra from Ikl = 0 to Ikl = 2n/A and from 
Ikl = 2n/A to the maximum wavenumber measured respectively. Here Ikl is the 
magnitude of the wavenumber vector and A is the grid spacing. All three models give 
consistent results that agree well with the experiment. The lower curve is the subgrid- 
scale kinetic energy (k) as predicted by the k-equation. It is seen to agree quite well 
with the experiment even though it was computed using only information available 
at the resolved scale. The dotted line is the result of running the simulation with 
the model switched off. Clearly the model plays an important role in the successful 
prediction of the experimental results. 

Figure 2 shows the energy spectrum at the initial time and two subsequent times 
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FIGURE 1. Decay of energy in isotropic turbulence: ~ ,dynamic localization model (k-equation) 
showing resolved (upper curve) and subgrid-scale energy (lower curve); +,dynamic localization 
model (constrained); - - - , dynamic model; . . . . . . , no model; , experiment (resolved); , 
experiment (subgrid). All quantities have been non-dimensionalized by choosing a length scale 1./271 
and a time scale t .  where 1. = 10M and t .  = 64M/Uo. Here M = 5.08 cm is the mesh spacing of 
the turbulence generating grid and Vo = lo3 cm s-l is the air speed upstream of the grid 

computed using the same three models together with the experimental measurements. 
The initial velocity field is chosen to match the initial energy spectrum, and the last 
two curves are the predicted spectra at the same instants of time corresponding to 
the experimental points in figure 1. The dotted lines are the result of running the 
simulation with the model switched off. It is seen that in the absence of the model, 
energy piles up at the high-wavenumber end of the spectrum due to insufficient 
dissipation. When the model is turned on, it provides just the right amount of 
dissipation so that the experimental spectra are reproduced. 

Figure 3 shows the prediction of the Kolmogorov 5/3 law and Kolmogorov constant 
for a simulation of forced isotropic turbulence. The external force is defined in the 
following way in Fourier space. At each time-step an external force 

is added to the right-hand side of the Navier-Stokes equations for all modes in some 
chosen wavenumber shell JkJ  = ko. In (6.2) e is a specified positive number, N is the 
number of modes in the wavenumber shell and uk is the velocity vector in wave-space. 
Clearly, the energy injection rate by the external force is 

The advantage of this method of forcing is that the energy injection rate is constant 
in time and is equal to the specified value E. In these simulations we have chosen 
ko = 2 and the Reynolds number was taken to be infinite. The energy spectrum 
was obtained by averaging ten individual spectra, well separated in time, after the 
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FIGURE 2. Time evolution of spectra in decaying isotropic turbulence: - , dynamic localization 
model (k-equation); +, dynamic localization model (constrained); - - - , dynamic model; . . . . . . , 
no model; 0 , experiment (t=0.66); , experiment ( t=1.55);  A , experiment (t=2.70). All quantities 
are non-dimensionalized in the same way as in figure 1. 

simulation had reached a statistical steady state. The k-equation gives a small plateau 
in the compensated spectrum ~-*/~lk1~/~E(lkl)  corresponding to the 5/3 law and a 
Kolmogorov constant of C ,  = 1.75. The experimentally measured values of C ,  are in 
the range 1.3 -2.1 (Chasnov 1990, 1991), though 1.5 is the commonly accepted value. 
The dynamic model and the dynamic localization model (constrained) give results 
that are close to each other but seem to give a somewhat steeper power law spectrum 
than Kolmogorov’s 5/3 law. The best fit seems to be E(k) - k-“ where m w 2.1. Since 
the Reynolds number is infinite the simulation would not reach a steady state if the 
model is turned off. 

It may be of interest to compare the results presented in this section (together with 
the material in Carati et al. mentioned above) with the LES of isotropic flow of MCtais 
& Lesieur (1992). With their so-called ‘structure function model’ they show that part 
of the energy spectrum has a 5/3 slope. However, in their theory, the Kolmogorov 
constant ck plays the role of an ‘adjustable parameter’ which is prescribed the value 
Ck = 1.4. The fact that the simulation recovers ck = 1.4 is therefore more a test 
of self-consistency of the model rather than a genuine prediction. By contrast, the 
value of the Kolmogorov constant reported in this section is a prediction in the sense 
that assumptions about the value of the Kolmogorov constant have never entered the 
theory. 

In the k-equation version of the dynamic localization model the fraction of points 
with C < 0 was practically constant in time at about 15%. Piomelli et al. (1991) find 
a value of about 40% from DNS data of isotropic turbulence. However, this value 
was quite sensitive to such details as the choice of the grid filter. 

In these computations the iterations for solving the integral equations were carried 
out until the error in satisfying the integral equation was less than 10% of the 
r.m.s. value of the corresponding coefficient. Increasing the level of convergence 
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to machine zero did not have a significant impact on the statistical quantities that 
were computed. The coefficient fields were evaluated once every time-step using the 
values at the previous time-step to start the iterations (except at the first time-step 
where C = 0 is used). Under these conditions it was found that the number of 
iterations required at each time-step typically varied between 4 and 9. Compared to a 
computation where C was set at a constant value, the dynamic procedure had a CPU 
overhead of approximately 4%, 16% and 67% for the dynamic model, the dynamic 
localization model (constrained) and the dynamic localization model (k-equation) 
respectively. The figures provided here can only serve as a rough indicator of the 
computational overhead since they will in general depend on the code as well as the 
computer used. 

In isotropic turbulence, the dynamic model as well as the two versions of the 
dynamic localization model can be consistently derived within the framework of 
the variational approach. It is therefore not surprising that all three models give 
comparable results that are in good agreement with the experiments. Further, the 
effect of the models is very clear in these simulations. If the model is turned off, either 
agreement with the experiment is very poor (in the decaying case) or a steady state 
cannot be reached at all (in the forced case). 

1 

6.2. The backward-facing step 
LES has been performed for turbulent flow over a backward-facing step at Reynolds 
number 28 000 based on the inlet free-stream velocity ( Vo) and step height (h). The 
flow is complex by virtue of the massive separation behind the step, the associated 
adverse pressure gradient and the recovery downstream of the reattachment region. 
The LES results are compared with experimental results of Adams, Johnston & Eaton 
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(1984). The subgrid-scale model used in the calculations is the dynamic localization 
model (constrained). This model was chosen because it is the simplest one that is still 
applicable to completely inhomogeneous flows. 

The experimental facility used by Adams et al. consists of a single-sided expansion 
with a fixed upper wall. The expansion ratio is 1.25 (upstream channel width is 4 
step heights). The flow upstream of the step consists of two developing boundary 
layers, each of thickness roughly 1.2 step heights. A potential core exists between the 
boundary layers. An aspect ratio (spanwise extent/step height) of 11.4 was used in 
order to enhance two-dimensionality of the mean flow in the separated region. 

The computational domain starts 10 step heights upstream of the step in order to 
allow the flow to recover from the inflow boundary condition, and extends 20 step 
heights downstream of the step. The spanwise extent of the computational domain 
is 3 step heights. As in the experiment, a solid wall is used at the top boundary. 
The inflow boundary condition consists of a mean velocity profile with superimposed 
random fluctuations (Le & Moin 1994). A convective boundary condition is used at 
the domain exit. In the homogeneous spanwise direction periodic boundary conditions 
are used and no-slip conditions are employed along all solid walls. 

The computational mesh is uniform in the spanwise direction and stretched in 
both the streamwise and wall-normal directions. Wall-normal stretching of the mesh 
is necessary in order to resolve the boundary layers. The mesh in the wall-normal 
direction is designed to resolve the boundary layers upstream as well as downstream 
of the step. The mesh is also stretched in the streamwise direction, increasing the 
density of grid points near the corner of the step. This is necessary in order to resolve 
sharp mean gradients in that region. The computational mesh has 244 x 96 x 96 grid 
points in the streamwise, wall-normal and spanwise direction, respectively. Based on 
the friction velocity at the inlet of the domain, the resolution (in wall units) in the 
streamwise direction is : Axiin = 17 and Ax,+,, = 273. The minimum resolution occurs 
at the corner of the step. For the wall-normal direction the corresponding numbers 
are : A y t ,  = 1.8 and A y t ,  = 227. The spanwise (uniform) resolution is Az+ = 36. 
The calculation required about 70 CPU hours on a CRAY-C90. Evaluation of the 
subgrid-scale model increases the CPU time spent per time-step in the code by about 
30%. 

An important parameter for comparing the result of the backward-facing step 
flow is the reattachment location. Adams et al. report a reattachment length of 
6.7 step heights which is identical to the value calculated in the present simulation. 
Figure 4 shows the mean streamwise velocity profiles at three locations downstream 
of the step: x / h  = 4.5 is in the recirculation region, x / h  = 7.2 is in the reattachment 
region and x / h  = 12.2 is in the recovery region. Overall good agreement between 
the computation and experiment is observed at all locations. The slight lag of the 
LES velocity profile compared with the experimental values in the recovery region 
is believed to be due to the blocking effect of the sidewall boundary layers in the 
experiment. Figure 5 shows the computed and measured streamwise r.m.s. velocity 
fluctuation. As with the mean velocity profiles, the overall agreement between the 
experiment and computation is very good. It should be noted that the simulation 
results are for the resolvable portion of turbulent intensities whereas the experimental 
data give the total intensities. The contribution of the subgrid part can be obtained 
in the k-equation version of the dynamic localization model since the whole of the 
subgrid stress is represented instead of just the deviatoric part. However, in the present 
simulation the simpler constrained version of the model was used. Figure 6 compares 
the result of an LES performed with the dynamic localization model (constrained) 
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FIGURE 4. Mean streamwise velocity profiles downstream of the step: ~ , LES; 
o , experimental results of Adams et al. 
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FIGURE 5. Streamwise turbulence velocity fluctuation downstream of the step: ~ , LES; 

o , experimental results of Adams et al. 

with that using a ‘span averaged and clipped’ version similar to (3.7): 

It is seen that close to the wall the dynamic localization model (constrained) gives 
slightly better agreement with the experiment than (6.4). The difference becomes 
insignificant as one moves further away from the wall. 
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FIGURE 6.  Mean streamwise velocity profiles downstream of the step: __ , LES with dynamic 
localization model (constrained); . . . . . . , LES with span-averaged and clipped version of the 
dynamic model; o , experimental results of Adams et al. 

7. Conclusions 
In this paper the solution procedure for obtaining the coefficient in the dynamic 

model was recast in the context of a variational problem. It was shown that 
in situations where the flow does have one or more homogeneous directions, the 
local least-square minimization coupled with the spatial averaging technique used 
by previous authors may be derived from this variational formulation. Specifically, 
if one imposes the constraint that C is independent of the homogeneous directions 
and the test-filtering operation is performed only with respect to the homogeneous 
directions, the expressions for C used by these previous authors follow as the solution 
of a constrained variational problem. Under the same conditions if one imposes the 
additional constraint that C 2 0 one derives the prescription where only the positive 
part of the space-averaged coefficient is taken. These expressions for C have been 
successfully used in the past in LES but an adequate theoretical justification for using 
them has been lacking. 

The variational formulation allows a generalization of the dynamic procedure to 
flows that do not necessarily have homogeneous directions. Thus, if C 2 0 is chosen 
as a constraint in the variational problem, an integral equation for determining 
C is obtained. The integral equation can be solved numerically at each time-step 
to determine the coefficient field C(x, y, z ,  t).  In this formulation the existence of 
homogeneous directions in the flow is not required and no restriction need be 
imposed on the nature of the test filter. We have called this method the dynamic 
localization model (constrained). 

The dynamic localization model (constrained) does not admit backscatter which 
is known to be a feature of turbulent flows. A subgrid-scale model was constructed 
using the square root of the turbulent kinetic energy as a velocity scale. This model 
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has a number of desirable features. In this formulation the restriction that C be non- 
negative is not imposed. In the absence of external energy input it is shown that the 
model would necessarily lead to decay of total energy. Thus, the instability of previous 
formulations due to unregulated backscatter is forbidden by construction. The model 
is shown to be realizable in the restricted sense of k 2 0. That is, the structure of the 
evolution equations is such that it would never cause the subgrid energy k to assume 
unphysical negative values. The more general realizability conditions of Schumann 
are only satisfied in a limited sense (54.4). Near solid walls the method ensures that 
the right balance of terms in the k-equation is obtained and that the eddy viscosity 
goes to zero as the cube of the distance from the wall. This latter property is shared by 
all the models in the 'dynamic model family' discussed in this paper. An approximate 
theoretical analysis is presented to show that the k-equation would properly predict 
a departure from the laminar state k = 0 to a turbulent state k > 0 when the flow 
undergoes a transition to turbulence. 

Extensive tests have been done on forced as well as freely decaying isotropic 
turbulence using the dynamic localization model. For isotropic turbulence, both 
versions of the dynamic localization model as well as the dynamic model give results 
that are in excellent agreement with experiments. In these tests the effect of the 
model is quite unambiguous since very poor results are obtained if the simulations 
are repeated without the model. The dynamic localization model (constrained) is 
then applied to the backward-facing step flow at a Reynolds number of 28000. The 
presence of walls and massive separation make this flow a good test case for evaluating 
performance of turbulence models in complex geometry flows. The mean streamwise 
velocity and turbulent intensity are in good agreement with the experiment. The 
reattachment length is also accurately predicted. 

In conclusion, the generality of the dynamic localization model should be empha- 
sized. The basic idea is independent of any particular subgrid-scale model and thus 
the methods presented here can be used to dynamically determine one or more model 
coefficients in other subgrid-scale models that might be superior to Smagorinsky's 
model. There are a number of issues that have to be resolved before the method 
can be applied to complex flows at high Reynolds numbers. One such issue is the 
resolution of the wall layers. In order to adequately compute the dynamics near 
the wall one has to have a dense clustering of grid points in this region so that all 
flow structures are fully resolved. The dynamic models are very well suited to such 
situations because when the flow is fully resolved the model automatically drives the 
eddy viscosity to zero. An efficient way of distributing grid points in a complex flow 
domain is to use unstructured meshes. The implementation of dynamic models on 
such unstructured meshes is underway. 

This work was supported in part by ONR (under grant N00014-91-5-4072) and 
AFOSR (under grant F49620-92-5-0003). We would like to thank Dr Nagi Mansour 
for providing the basic code for isotropic turbulence which we modified to perform 
the tests described in 56.1. We would also like to thank Dr Daniele Carati for his 
careful reading of the manuscript and helpful suggestions. 

Appendix. The dynamic determination of C, and D .  
The evolution of subgrid-scale kinetic energy is modelled by ((4.6) in the text) 
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where C. and D (C.,D 2 0)  are functions of position and time. By analogy one can 
write down the corresponding evolution equation for the subtest-scale kinetic energy : 

Equations (A 1) and (A 2) must be consistent with the relation 
h 

K = k + iLii (A 3) 

((4.5) in the text). Further, one can derive the following identity relating the flux 
of subgrid-scale kinetic energy f j  and the corresponding quantity at the test level? 
Fj : 

h h A n  
Fj - f j  = Z j  U, (7 + k + UiU,/2) - U j  (p + k + UiUi/2) (A 4) 

where p is the resolved pressure$. These facts can be exploited to determine C ,  and 
D as shown below. 

To determine D, we substitute the modelled fluxes 

f j  = DAk'I2ajk (A 5) 

and 

into (A 4) to obtain 

where 

Fj = D k ' I 2 d j K  

A 

Zj  = X j D  - YjD 

X j  = XK'I2djK,  

Y, = Ak'I2ajk. 
Following the standard methodology, D is obtained on minimizing 

/ (Zj  - X j D  + @ ) ( Z j  - X j D  + @)dy (A 10) 

subject to the constraint D 2 0. The solution to this variational problem can be 
immediately written down in analogy to the solution (3.12) in the text if one notices 
the similarity in structure between (A 7) and (1.7): 

where 

t We are grateful to Dr W. H. Cabot for bringing this identity to our attention. 
$ There is an analogous identity relating the dissipation at grid level (eg) and test level ( E ~ ) :  

E~ - < = Re-' [(&yj)(2iii,) - (ai%,)(&%,)]. However, this identity is unusable because the right-hand 
side vanishes at high Reynolds numbers. This is due to the fact that at high Reynolds numbers 
the molecular dissipation in the inertial range 'test window' is vanishingly small and therefore no 
estimate of the actual dissipation is possible based on this information. 

A 
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and 

where 

and F j  is given by (A 6). On applying the 'test-filtering' operation to (A 1) we get 
/----.- 

Now we eliminate d,E between (A 16) and (A 18) and replace the quantity Fj  -F j  by 
its expression (A 4) and Tij by Lij +Zij (from the identity (1.5)) to obtain 

A x = $C. - tpc,. (A 19) 

(A 20) 
A - h - A 

Here 
- 

= z..S. 11 li -?..S.. IJ !J - L..S. .  11 11 + 8 .  I P I  . - 1D 2 t L.. 11 + 2 lRe-'a..L.. JJ 1 1 7  

and 

where 
A- 

pj = Gj (p + ;uiui) - uj ( is + $Ui)  (A 23) 

and D, = a, +Gjd j .  The subgrid-scale stress zij is given by (4.1) in the text so that 
4, tp and x are all computable from the available resolved fields. Since (A 19) is a 
single integral equation for C,, one might be tempted to solve it directly without first 
going through the variational formulation. However, since the viscous dissipation 
term is necessarily non-negative from its definition, C. must be non-negative whereas 
the C, obtained by solving (A 19) can have either sign. One must therefore try to 
'best satisfy' (A 19) subject to the constraint C, 2 0. That is, C. must be chosen so 
as to minimize the functional 

with the constraint C, 2 0. Once again the solution to this variational problem can 
be written down in analogy to (3.12) in the text: 
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where 
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1 
f4x) = 

and 

It is readily verified that x, 4, y ,  Z j ,  X j  and Yj  are all Galilean invariant. Thus 
C, and D obtained by solving (A 11)  and (A 24) are also Galilean invariant which 
in turn impies that the subgrid-scale kinetic energy equation (A 1) itself is Galilean 
invariant. 
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